3.221 \(\int \frac{\sqrt{1-a^2 x^2}}{\sqrt{x} \sqrt{1+a x}} \, dx\)

Optimal. Leaf size=35 \[ \sqrt{x} \sqrt{1-a x}+\frac{\sin ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a}} \]

[Out]

Sqrt[x]*Sqrt[1 - a*x] + ArcSin[Sqrt[a]*Sqrt[x]]/Sqrt[a]

________________________________________________________________________________________

Rubi [A]  time = 0.0288091, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {848, 50, 54, 216} \[ \sqrt{x} \sqrt{1-a x}+\frac{\sin ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - a^2*x^2]/(Sqrt[x]*Sqrt[1 + a*x]),x]

[Out]

Sqrt[x]*Sqrt[1 - a*x] + ArcSin[Sqrt[a]*Sqrt[x]]/Sqrt[a]

Rule 848

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)
^(m + p)*(f + g*x)^n*(a/d + (c*x)/e)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && EqQ[c
*d^2 + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{1-a^2 x^2}}{\sqrt{x} \sqrt{1+a x}} \, dx &=\int \frac{\sqrt{1-a x}}{\sqrt{x}} \, dx\\ &=\sqrt{x} \sqrt{1-a x}+\frac{1}{2} \int \frac{1}{\sqrt{x} \sqrt{1-a x}} \, dx\\ &=\sqrt{x} \sqrt{1-a x}+\operatorname{Subst}\left (\int \frac{1}{\sqrt{1-a x^2}} \, dx,x,\sqrt{x}\right )\\ &=\sqrt{x} \sqrt{1-a x}+\frac{\sin ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0101975, size = 35, normalized size = 1. \[ \sqrt{x} \sqrt{1-a x}+\frac{\sin ^{-1}\left (\sqrt{a} \sqrt{x}\right )}{\sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - a^2*x^2]/(Sqrt[x]*Sqrt[1 + a*x]),x]

[Out]

Sqrt[x]*Sqrt[1 - a*x] + ArcSin[Sqrt[a]*Sqrt[x]]/Sqrt[a]

________________________________________________________________________________________

Maple [B]  time = 0.156, size = 76, normalized size = 2.2 \begin{align*}{\frac{1}{2}\sqrt{-{a}^{2}{x}^{2}+1}\sqrt{x} \left ( 2\,\sqrt{a}\sqrt{-x \left ( ax-1 \right ) }+\arctan \left ({\frac{2\,ax-1}{2}{\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{-x \left ( ax-1 \right ) }}}} \right ) \right ){\frac{1}{\sqrt{ax+1}}}{\frac{1}{\sqrt{-x \left ( ax-1 \right ) }}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^(1/2)/x^(1/2)/(a*x+1)^(1/2),x)

[Out]

1/2*(-a^2*x^2+1)^(1/2)*x^(1/2)/(a*x+1)^(1/2)*(2*a^(1/2)*(-x*(a*x-1))^(1/2)+arctan(1/2/a^(1/2)*(2*a*x-1)/(-x*(a
*x-1))^(1/2)))/(-x*(a*x-1))^(1/2)/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} x^{2} + 1}}{\sqrt{a x + 1} \sqrt{x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)/x^(1/2)/(a*x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)/(sqrt(a*x + 1)*sqrt(x)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.80723, size = 486, normalized size = 13.89 \begin{align*} \left [\frac{4 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{a x + 1} a \sqrt{x} -{\left (a x + 1\right )} \sqrt{-a} \log \left (-\frac{8 \, a^{3} x^{3} - 4 \, \sqrt{-a^{2} x^{2} + 1}{\left (2 \, a x - 1\right )} \sqrt{a x + 1} \sqrt{-a} \sqrt{x} - 7 \, a x + 1}{a x + 1}\right )}{4 \,{\left (a^{2} x + a\right )}}, \frac{2 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{a x + 1} a \sqrt{x} -{\left (a x + 1\right )} \sqrt{a} \arctan \left (\frac{2 \, \sqrt{-a^{2} x^{2} + 1} \sqrt{a x + 1} \sqrt{a} \sqrt{x}}{2 \, a^{2} x^{2} + a x - 1}\right )}{2 \,{\left (a^{2} x + a\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)/x^(1/2)/(a*x+1)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(-a^2*x^2 + 1)*sqrt(a*x + 1)*a*sqrt(x) - (a*x + 1)*sqrt(-a)*log(-(8*a^3*x^3 - 4*sqrt(-a^2*x^2 + 1)
*(2*a*x - 1)*sqrt(a*x + 1)*sqrt(-a)*sqrt(x) - 7*a*x + 1)/(a*x + 1)))/(a^2*x + a), 1/2*(2*sqrt(-a^2*x^2 + 1)*sq
rt(a*x + 1)*a*sqrt(x) - (a*x + 1)*sqrt(a)*arctan(2*sqrt(-a^2*x^2 + 1)*sqrt(a*x + 1)*sqrt(a)*sqrt(x)/(2*a^2*x^2
 + a*x - 1)))/(a^2*x + a)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (a x - 1\right ) \left (a x + 1\right )}}{\sqrt{x} \sqrt{a x + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**(1/2)/x**(1/2)/(a*x+1)**(1/2),x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))/(sqrt(x)*sqrt(a*x + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)/x^(1/2)/(a*x+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError